
Magnetic resonance on a ring of aromatic molecules

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 3199

(http://iopscience.iop.org/0953-8984/3/18/014)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 23:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/18
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


3. Phys.: Condens. Matter S (1991) 319(M204. Printed in the UK 

LETTER TO THE EDITOR 

Magnetic resonance on a ring of aromatic molecules 

F V Kusmartsev 
Institut fur Theoretische Physik der UnivemitSt zu K&, D - 5 W  K6ln 41, Federal 
Republic of Germany 
and 
L D Landau Institute for Theoretical Physics, Moacow, 117940, GSP-1, Kosygin. 2, 
V-334, USSR 

Received 4 January 1991 

Abstract. We have calculated exactly the spectrum of electrons on a ring in a 
magnetic field for the case of the Hubbard interaction between electrons. We have 
found that very unusual resonances OCNT when the flux through the ring changer. 
The appearance of these resonances stronsly dependson the total number of electrons 
N. They appear when the flux changes by Af = 11.V. ln analogy with twc-particle 
b u n d  states one can think that on a ring with strong interactions between electrons, 
N-particle bound states appear. Such res0n-w may be found in aromatic molecules 
and on a ring system of singly connected quantum dots for ‘Coulomb b lodde’  
conditions. 

In our previous work we have calculated the spectrum of spinless fermions located on 
a ring without interaction [1,2] and with interaction [3] in a transverse magnetic field. 
We found that for an even number of fermions on a ring there exists a flux phase 
state 14-10]. On the other hand interacting electrons can have a different behaviour. 
Namely, spin-flip processes may destroy the non-zero orbital moment which exists in 
the case of spinless fermions [1,2]. We show in the present letter that such processes 
exist and have an amusing character. They completely destroy the orbital moment so 
that it becomes zero. In order to demonstrate this phenomenon we will solve, using 
the Bethe ansatz, the Huhbard Hamiltonian having the form 

involving as parameters the electron hopping integral 1 ,  the on-site repulsive Coulomb 
potential U, and L which is the number of sites on a ring. The operator a& (ai,) 
creates (destroys) an electron with spin projection U (U = + or -) at a ring site i, and 
nio is the occupation number operator a&ai,. The summations in (1) extend over the 
ring sites i or-as indicated by ( i , j ) ,u -over  all distinct pairs of nearest-neighbour 
sites along the ring with the spin projection U. 

The Hamiltonian (1) models a system of M electrons with spin projection up 
U = + and N - M electrons with down spin U = -. 
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For the case of the magnetic field we will use the same form of the wavefunction 
as has been proposed in previous works [II-181: 

where P = (Pi, .  . . , P N )  and Q = (Q1, .  . . ,QN) are two permutations of (1,2,. . . , N). 
The coefficients [Q,P] as well as ( K i ,  ..., K N )  are determined from the Bethe 
equations which in a magnetic field are changed by the addition of the flux phase 
27rf [19,20] 

if sin k j  - iXp - U / 4  
p=1 (. it sin . k j  - iXp + U / 4  

exp[i(kjJ - 27rf)1= (3) 

1. (4) 
ix, - iAp + U / Z  -U(. j = 1  it sin kj - iXp + U / 4  ) = ,=l (ix, - ixp - U / z  

it sin k j  - ix, - ~ / 4  

These equations are greatly simplified in the limit U + CO. As a result we have the 
following equations: 

where the quantum numbers I, and J ,  are connected with charge and spin degrees of 
freedom, respectively [21,22]. The sets of these quantum numbers, of course, strongly 
depend on the magnetic flux f. They are different for even and odd numbers of 
particles. One can have the following classification for sets ( I j )  and (J,). For even 
numbers of electrons, N,  and for even numbers of the up spins, M ,  the numbers I j  
should be integer and the numbers J ,  should be half-odd integer. For even numbers 
of electrons, N,  and for odd numbers of the up spins, M, the numbers I j  should be 
half-odd integer and J ,  should be integer. For odd numbers of electrons, N, and for 
even numbers of the up spins, M ,  the numbers Ij and the numbers J ,  should also be 
integer. For odd numbers of electrons, N, and for odd number of up spins, M ,  the 
numbers Ij and J ,  should be half-odd integer. 

For example at zero magnetic field they have the following form [21,22]: when 
N = 2K (an even number), then 

ri ,..., rzK =-K, - (K  - I) ,..., - i ,o , i  ,..., K - 1 

J i , .  .. , J M  = -;(A4 - 1) ,..., -1 2 ' 2 ' "  1 ., $(M - 1) 

r, ,..., rZK = -K + 'i 1 ,..., -1.1 z ,  ,..., K - A 

J 1 , . . - ,  J M  = -$(M - 1) ,..., - l , O , l , . .  .,$(M- 1) 

(6) 

(7) 

where M is also an even number; and 

(8) 
(9) 

2 

where M is an odd number. 
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If N = 2K + 1 (an odd number) then 

I t , .  . . , IZx+, = -If,. . . , - l , O ,  1,. . . , K 

J , , .  . . , JM = - i M , .  . . , - l , O , l , .  . . , iM - 1 

where M is an even number; and 

It,. . . ,IN = - i N , . .  . , -$,$,.. ., $N 
J ,,..., JM = - 4 M  ,..., -+,$ ,..., iM 

where M is an odd number. 
In a magnetic field these sets of numhers are shifted. The optimal set is determined 

from the principle of the minimum of the total energy of N electrons with M up spins. 
Using such a principle for an even number of electrons one may obtain the following 
expressions for the total energy: 

and 

where I and k are arbitrary integer numbers; the magnitude D is the positive constant: 

(16) 
sin(aN/L) 
sln(ir/L) ’ 

D = 2 t  . 

For an odd number of electrons the expressions for the total energy have the form 

>I E ~ ~ = - D C O S  - f - - + i + ; i T k  M [:( 2N 

and 

when the values of M are even and odd, respectively. It is worth noting that all these 
expressions, as functions of f ,  are periodic functions with periods f .  = L ,  f T  = LM/N 
and, of course, fT = L(N - M ) / N .  The quantum numbers I and k describe the charge 
and spin vortices. 

Let us consider the case of an odd number of particles N .  For the ground state the 
quantum numbers t ,  1 and M are not independent and are governed by the equation 
which can be obtained from (17): 

(19) 
n a M  
N 2 N .  I + - k = -  
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Let all spins be down, i.e. M = 0. Then a simple solution of (19) is k = 1 = 0. Then 
from (17) the ground state energy is given by 

For k = I = 0 a t  the point f = 1/2N a transition will exist in the state with M = 2 
where, for the ground state energy from (l?), we have: 

E L d N = - D c 0 s  - f - -  [X 31 
Then upon further increasing the magnetic flux f to f = 3/2N a transition in the 
state with M = 4 will w u r  and so on. That is, at the point f = (2p - 1)/2N there 
is a transition in the state with M = 2p, where here k and I are equal to zero and p 
is an integer number. The ground state energy in this state has the form: 

This expression describes the ground state energy only in the interval of flux f: 
(2p - 1)/2N < f < (2p + 1)/2N. If in the initial state all spins are up, then the 
energy should be described by equation (18). At k = I = 0 we again have transitions 
with M changing by AM = 2. Here the ground state energy has smooth minima 
when 

(23) 
P f" = sc; 

where p is an arbitrary integer number. The ground state energy has  cuspoidal maxima 
at 

1 
fmax = -1- - N 2N 

When the magnetic flux increases from zero the total current decreases. A t  the 
point f = 1/2N this diamagnetic current changes sign, but conserves its absolute 
value. The expression describing the total current at arbitrary f has  the form 

(25) 
2 p -  1 2 P + l  

L -<f<,,. 2N 

One can see from this formula that at f = (2p + 1)/2N the current makes a jump 
from Jmi, = -(2aD/L)sin(n/L) to J,, = (ZnD/L) sin(s/l). This jump has a deep 
meaning in that it characterizes the phase transition. The abrupt changing of the 
diamagnetic current a t  the point of transition helps the ring to trap a new fractional 
quantum of the total flux f = 1/N which characterizes the spin-charge vortex. In 
this case the diamagnetic current screens the magnetic flux only before the transition; 
after the transition it d m  not screen the external magnetic Eux, but, vice versa, the 
diamagnetic current generates the additional fractional quantum of the flux f = 1/N. 

The dependence of the diamagnetic current on the magnetic flux behaves 
qualitatively like the dependence of the current associated with a single particle with 
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an effective charge e’ = Ne in the ground state on the flux through the hole in 
a superconducting ring. The diamagnetic current does not have a direction which 
brings the total flux to zero. The direction of the orbital current is such that it brings 
the total flux closer to the nearest fractional number of flux quantum f = p/N. The 
direction of the diamagnetic current alters suddenly at each transition. It is amusing 
that at each of these transitions there is the generation of the spin-charge vortex, 
described by the quantum numbers k, I and M. These quantum numbers are not 
independent. A t  k = 1 = 0 the transition is simply the flip of two spins which can 
even be in the opposite direction to the magnetic field. This can be explained by the 
fact that the changing of the sign of the current at the points of the transitions means 
a flip of the orbital momentum. As a result we have spin-orbital momentum flip or, 
in other words, the generation of a spin-charge vortex. If we take into account the 
Zeemann interaction then in high magnetic field f > 1 this ideal physical picture may 
be changed. 

The same behaviour can be obtained with an even number of particles. In this 
case the ground state is also strongly degenerate. The quantum numbers I ,  k and M 
for ground state energy are governed by an analogous equation to (19): 

M 
N I + - k = O ,  

At k = 1 = 0 without a field the ground state is singlet. Thus, we have obtained 
results which are equivalent to the ‘Nagaoh’ theorem. That is, for the quantum 
numbers I = k = 0 and an odd number of particles in the ring, the ferromagnetic state 
is favoured, while for even number of particles the antiferromagnetic singlet state is 
favoured. However it is worth noting that all states with different M may give the same 
energy dependence at an appropriate choice of the values of the quantum numbers 1 
and k, i.e. the ground state energy is strongly degenerate. 

Let, for example, 1 = k = 0 then for an even number of particles in the region 
-1/2N < f Q 1/2N the ground state energy is described by equations (14) with 
M = N/2 (it coincides with (20)); in the region 1PZN < f < 3/2N it is described 
by equation (14) with M = N/2 + 2 (it coincides with (21)) and so on. One general 
conclusion that can be drawn here is that the ground state energy is a periodic function 
of the flux f through the ring with period fT,= 1/N. 

This phenomenon has a simple explanation that is related to the multi-valued 
wavefunction of the hole on the ring (see, for comparison, [23]). If we take the hole 
around the ring once, we have, in effect, changed the entire ring from one ground state 
phase to the other (all electrons have moved only one site). Only by taking the hole 
around N times do we restore the system to its original state. The total change of the 
Aharonov-Bohm phase due to this process is NfT. For the periodicity of the total 
wavefunction this change, according to gauge invariance, equals one unit. Whence 
the ground state energy as a function of the flux f has the period fT = 1/N. The 
strong Coulomb sitesite repulsion prevents a free oneelectron motion over the ring 
(‘Coulomb blockade’) but it allows the motion of all N electrons together. 

The magnetization and susceptibility of this ring are also periodic functions with 
this universal period fT = 1/N. 

For the ring system of singly connected quantum dots [24] such a phenomenon 
may also be readily observed. There is an experiment iu which the oscillation of 
the magnetization with period f = 1/2 on copper rings has been observed [25]. If 
instead of a copper ring we take a ring consisting of one of the transition metals (Mn, 
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Fe, CO or Ni) then on such a ring it should be possible to observe the oscillation of 
the magnetization and magnetic sucseptibility with period fT = 1/N, i.e. the period 
of the oscillation is inversely proportional to the density of electrons on the ring. 
At intermediate values of U - t the period of the oscillation may be equal to an 
arbitrary fractional number. An analogous system, where we have found a similar 
‘,/NI oscillation, is the free electrons on a ring with one magnetic ‘Kondo’ impurity 
[26]. The phenomenon found in the present work may also be observed when studying 
aromatic molecules in a transverse magnetic field. Of special importance may he the 
optical experiments. 

I wish to thank F Woynorovich, S Kivelson, B Spivak and G Kohring for fruitful 
discussions and also M L Ristig for hospitality. This work was supported by the 
Alexander von Bumboldt Foundation. 
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